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Abstract

Deterministic Galerkin approximations of a class of second order elliptic PDEs with
random coefficients on a bounded domain D ⊂ Rd are introduced and their convergence
rates are estimated. The approximations are based on expansions of the random diffusion
coefficients in L2(D)-orthogonal bases, and on viewing the coefficients of these expansions as
random parameters y = y(ω) = (yi(ω)). This yields an equivalent parametric deterministic
PDE whose solution u(x, y) is a function of both the space variable x ∈ D and the in general
countably many parameters y.

We establish new regularity theorems decribing the smoothness properties of the solution
u as a map from y ∈ U = (−1, 1)∞ to V = H1

0 (D). These results lead to analytic estimates
on the V norms of the coefficients (which are functions of x) in a so-called “generalized
polynomial chaos”(gpc) expansion of u.

Convergence estimates of approximations of u by best N -term truncated V -valued poly-
nomials in the variable y ∈ U are established. These estimates are of the form N−r, where
the rate of convergence r depends only on the decay of the random input expansion. It
is shown that r exceeds the benchmark rate 1/2 afforded by Monte-Carlo simulations with
N “samples” (i.e. deterministic solves) under mild smoothness conditions on the random
diffusion coefficients.

A class of fully discrete approximations is obtained by Galerkin approximation from a
hierarchic family {Vl}∞l=0 ⊂ V of finite element spaces in D of the coefficients in the N -
term truncated gpc expansions of u(x, y). In contrast to previous works, the level l of
spatial resolution is adapted to the gpc coefficient. New regularity theorems decribing the
smoothness properties of the solution u as a map from y ∈ U = (−1, 1)∞ to a smoothness
space W ⊂ V are established leading to analytic estimates on the W norms of the gpc
coefficients and on their space discretization error. The space W coincides with H2(D) ∩
H1

0 (D) in the case where D is a smooth or convex domain.
Our analysis shows that in realistic settings a convergence rate N−s

d.o.f in terms of the
total number of degrees of freedom Nd.o.f can be obtained. Here the rate s is determined
by both the best N -term approximation rate r and the approximation order of the space
discretization in D.
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1 Introduction

Partial differential equations with stochastic input data are a commonly used paradigm in sci-
ence and engineering. Stochasticity typically reflects the uncertainty in the various parameters
entering the physical phenomenon described by the equation. A simple yet relevant model
problem is the elliptic equation

−∇ · (a∇u) = f in D, u|∂D = 0, (1.1)

in a bounded Lipschitz domain D ⊂ Rd. We assume that f = f(x) is a given deterministic
function in L2(D) and that the diffusion coefficient a in (1.1) is a random field on a probability
space (Ω,Σ, P ) over L∞(D) (see, e.g., [11]). In particular, given any ψ ∈ L2(D) and any Borel
subset A of R, the set {ω ∈ Ω : (a(·, ω), ψ) ∈ A} ∈ Σ where (·, ·)L2(D) denotes the L2(D)
innerproduct and ω ∈ Ω represents a draw of this field with respect to the probability P .

In this model, stochasticity is therefore used to describe the uncertainty in the diffusion
coefficient a. In order to ensure uniform ellipticity, we make the following assumption.

Assumption 1. There exist constants 0 < amin ≤ amax such that

amin ≤ a(x, ω) ≤ amax, (1.2)

holds for all (x, ω) ∈ D × Ω.

By the Lax-Milgram lemma, this assumption immediately implies for every ω ∈ Ω the exis-
tence of a solution u(·, ω) in the space H1

0 (D), in the sense of the variational formulation:∫
D

a(x, ω)∇u(x, ω) · ∇v(x)dx =
∫
D

f(x)v(x)dx, for all v ∈ H1
0 (D), (1.3)

where the gradient ∇ is taken with respect to the x variable. This solution satisfies the estimate

‖u(·, ω)‖V ≤ B :=
‖f‖V ∗
amin

for all ω ∈ Ω. (1.4)

Here, and in all the following, we denote by V the space H1
0 (D), equipped with the energy norm

‖v‖V := ‖∇v‖L2(D) and by V ∗ its dual H−1(D). The estimate (1.4) also reads

sup
ω∈Ω
‖u(·, ω)‖V ≤ B. (1.5)
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The solution u = u(x, ω) is a random field associated to the probability space (Ω,Σ, P ). Numer-
ical methods have been developed in order to approximately compute quantities which describe
the probabilistic behaviour of the field u. Such quantities are typically the statistical moments
of u, such as

(i) the mean field u which is defined as (formal) “ensemble average”

u := E(u) =
∫
Ω

u(·, ω)dP (ω) ∈ V ,

(ii) the covariance function

Cu := E([u− u)]⊗ [u− u]) ∈ V ⊗ V .

Since u is in general not a Gaussian process, u and Cu only give partial information on the
probability distribution of u. We distinguish two general numerical approaches for computing
such quantities: Monte-Carlo (MC) methods and deterministic methods.

Monte-Carlo methods: These are based on N independent draws {a1, · · · , aN} of the random
coefficient a. For each instance ai, they compute the solution ui to the equation −∇·(ai∇ui) = f

and use the resulting sample {u1, · · · , uN} to estimate the quantities of interest. For example,
the mean field u is approximated by

uN :=
1
N

N∑
i=1

ui. (1.6)

The fact that the ui are independent and their laws are identical to the law of u implies

E(‖u− uN‖2V ) =
1
N

E(‖u− u‖2V )

and, since E(‖u− u‖2V ) ≤ E(‖u‖2V ), we obtain with the Cauchy-Schwarz inequality,

E(‖u− uN‖V ) ≤ (E(‖u‖2V ))1/2N−
1
2 (1.7)

i.e. Monte-Carlo approximations with N samples converge with rate 1/2 provided that the
solution u as a V -valued random function has finite second moments. If u has lower summability,
lower convergence rates for the MC approximation (1.6) will result: interpolating (1.7) with the
straightforward bound E(‖u − uN‖V ) ≤ 2E(‖u‖V ) implies the reduced rate N−r with r =
1− 1/q ∈ [0, 1/2] provided E(‖u‖qV ) <∞ for some q ∈ [1, 2] (see e.g. [14]). Better summability
of u in the ω variable, such as e.g. (1.5), however, does not generally allow to improve the
convergence rate of the MC approximation (1.6) beyond r = 1/2.

In practice, the ui in (1.6) are computed approximately by space discretization, for example
by the finite element method. The computable approximation to u is thus given by

uN,h :=
1
N

N∑
i=1

ui,h,
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where ui,h is the Galerkin approximation to ui in the finite element space Vh which need to be
chosen such that the corresponding discretization error does not affect the MC rate (1.7). The
total complexity of the solution process is thus at least of order O(NM) where M = dim(Vh).

Leaving aside the space discretization aspects, we note the following advantages and draw-
backs of the MC approximation (1.6):

• On the positive side, the computations of the ui are independent from each other and
can be performed in a parallel fashion. Observe also that MC is a statistical inference
approach: it does not require the full knowledge of the joint probability law of the field
a, but only a sample of independent instances. If, however, these instances are computer
generated (as, e.g., in numerical simulations), the “simulator” necessarily contains the law
of a in some (parametric) form.

• On the negative side, the convergence estimate (1.7) is only in an expectation sense (al-
though u is a deterministic function).

The convergence rate (1.7) of 1/2 for the Monte-Carlo approximation (1.6) can not be
improved, in general, despite the fact that the solution u depends smoothly on a.

Deterministic methods: These have been studied for several decades (see [8] and the refer-
ences therein). In contrast to MC, these methods take advantage of the smooth dependence of
u on a. We distinguish two general classes of deterministic methods.

The perturbation approach is based on the Neumann expansion of the stochastic solution
around its mean field, and successive computations of the terms in this expansion (see [10] and
the references therein). Such methods are computationally efficient for the first terms, i.e. the
low order moments of the solution, yet grow in complexity for higher order terms.

The spectral approach is based on the so-called Wiener/generalized polynomial chaos expan-
sion introduced in [22] (see also [9] and [15]). The first step consists in representing a by a
sequence of scalar random variables (yj)j≥1, usually obtained through a decomposition of the
oscillation a− a into an orthogonal basis (ψj)j≥1 of L2(D):

a(x, ω) = a(x) +
∑
j≥1

yj(ω)ψj(x). (1.8)

The solution is now viewed as a function u(x, y) where x ∈ D is the space variable and y = (yj)j≥1

is a vector of “stochastic variables”, and the objective is to compute a numerical approximation
to u(x, y). This approach provides an approximation of the probability law of the solution
and therefore gives access to virtually all possible information on its probabilistic behaviour.
However, one is facing a problem of high - possibly infinite - dimension, due to the number of
coordinates in the y variable refers to the approximation of the solution in this variable using
tensor product polynomials.

The numerical analysis of the spectral approach began only recently. When the vector y
has finite dimension K, the error between u(x, y) and its approximation were shown in [1] to
decrease exponentially with respect to the polynomial degree of the approximation. However,
the derived estimates depend heavily on K as K grows. Since y is usually of infinite dimension,
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one needs to incorporate the effect of its truncation to a finite set of K variables in the error
analysis, and K has to grow to +∞ in the convergence analysis. There is therefore a crucial
need for convergence estimates which are independent of K. Such estimates were established for
the first time in [21], where exponential convergence rates independent of K were proved under
the assumption that the terms in the expansion (1.8) decay exponentially to 0 in the L∞ norm.
Here, the authors specialized on the Karhúnen-Loève (KL) expansion for (1.8), and the desired
decay property was obtained under the (strong) assumption that the covariance function

Ca(x, y) := E([a(x)− a(x)][a(y)− a(y)]) (1.9)

has analytic smoothness in x and y.
In the present paper, we explore the more realistic setting where the terms in (1.8) only

have algebraic decay. Our main objective is to design an approximation scheme which converges
with rate r > 1/2 under such realistic assumptions on the random input. Our analysis is not
restricted to the KL expansion and will therefore be carried out for general expansions of a in an
orthogonal basis (ψj). We shall analyze the dependence of the solution u(x, y) on the parameters
y and thereby show that u has an expansion into a polynomial basis with coefficients from V .
By deriving a priori bounds on the decay of the coefficients of u in such an expansion, we shall
derive algebraic rates of convergence for the spectral approach under rather mild assumptions
on the smoothness of a. Our analysis is independent of the number K of retained variables and
depends only on the rate of decay of the terms in (1.8). A key feature in our analysis lies in the
choice of a particular sparse tensor product polynomial space, which can be interpreted as a form
of non-linear best N -term approximation. Let us mention that other strategies for selecting the
sparse polynomial spaces in the variable y ∈ U have been proposed and investigated recently
in [12, 13] based on the concept of sparse grid introduced in [19]. A specific feature of our
approach, compared to these strategies, lies in the optimal choice of the polynomial space which
allows us to relate the convergence rate r to the rate of decay of the random input expansion.
Another contrast with previous works is that we adapt the level of spatial discretization to each
gpc coefficient, which is essential in order to obtain an optimal overall convergence rate in terms
of the total number of degrees of freedom.

Our paper is organized as follows. We discuss in §2 the general properties of the stochastic
expansion (1.8) and introduce the corresponding parametric PDE induced by (1.1). This para-
metric problem is defined for parameters y ∈ U where U is the set of all sequences (yj) with
|yj | ≤ 1. In §3, we introduce the measures and spaces defined on U which are the setting for our
approach. This is followed in §4 by deriving bounds on the partial derivatives of u(x, y) with
respect to the variables yj . A general Galerkin scheme for the approximation of u(x, y) in the
y variable is proposed in §5, based on a sparse set of tensorized Legendre polynomials. In order
to study the convergence of this scheme, we investigate in §6 bounds on the exact Legendre
coefficients in the expansion of u. These estimates are used in order to derive the convergence
rate of the Galerkin scheme, through several key results on the summability of multi-indexed
sequences which are established in §7. Finally we discuss in §8 the full discretization in the x
and y variables and make a final comparison with MC methods. Conclusions and perspectives
are raised in the final section.
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We emphasize that the results of this paper show that solutions to stochastic and parametric
equations of the above type possess enough regularity to be well approximated by Galerkin
subspaces of suitable dimension. The problem of how to numerically find these subspaces is not
treated although we make some remarks on this interesting problem in the concluding section
of this paper.

2 Basis expansions of the coefficient a

The present paper is based on the spectral approach which we recall begins by decomposing
the random field a into an expansion of the type (1.8). We assume throughout this paper that
(ψj)j≥1 is a complete orthogonal sequence in L2(D) (we could work more generally with any
Riesz basis of L2(D)). Based on our assumptions on the random field a, the random variables

yj := ‖ψj‖−2
L2

∫
D

(a− a)ψj , j = 1, 2, ...

are P -measurable functions.
We next introduce assumptions concerning the convergence of the expansion (1.8) in the

L∞(D) norm. These assumptions are formulated in terms of the summability properties of the
sequence (‖yjψj‖L∞(D))j≥1. Up to a renormalization of the basis functions ψj , we may assume
without loss of generality that for all j ≥ 1 the random variables yj are such that ‖yj‖L∞(Ω) = 1.
Up to a change of the definition of a on a set of measure zero in Ω this is equivalent to

sup
ω∈Ω
|yj(ω)| = 1. (2.1)

The vector y is thus supported in the infinite dimensional cube

U := [−1, 1]N,

i.e. the unit ball of `∞(N). With such a normalization, our assumptions are formulated on the
sequence (‖ψj‖L∞(D))j≥1. Our first assumption is a strengthening of Assumption 1.

Assumption 2. The functions a and ψj satisfy∑
j≥1

‖ψj‖L∞(D) ≤
κ

1 + κ
amin, (2.2)

with amin := minx∈D a(x) > 0 and κ > 0.

In the convergence results of §7, a prescribed value of the constant κ will be needed. We
can view Assumption 2 as a strong ellipticity assumption on a which requires that the relative
perturbation of ā by the series

∑
j≥1 yjψj is not too large. Clearly, it implies Assumption 1 with

amin := amin −
κ

1 + κ
amin =

1
1 + κ

amin > 0. (2.3)
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Since κ
1+κamin = κamin, Assumption 2 also implies

∑
j≥1

‖ψj‖L∞(D)

amin
< κ. (2.4)

In particular, Assumption 2 and the value of κ is independent of the scaling of a.
In order to obtain convergence rates r > 1

2 for our approximation scheme, additional summa-
bility properties are needed as expressed by the following assumption.

Assumption 3. The sequence (‖ψj‖L∞(D)) belongs to `p(N) for some p < 1:∑
j≥1

‖ψj‖pL∞(D) < +∞

We next discuss possible choices for the basis (ψj)j≥1. Since the main objective is to describe ac-
curately the diffusion coefficient a with as few parameters yj as possible and to fullfill the above
summability assumptions, this choice should be tied to the properties of this random field. On
the other hand this basis will enter the computation of the solution and should therefore be easy
to manipulate numerically.

An important example is the Karhúnen-Loève basis of the L2(D)-orthogonal eigenfunctions
of the covariance integral operator

g 7→ Tg(x) :=
∫
D

Ca(x, y)g(y)dy,

where Ca is the covariance function (1.9). We index these eigenfunctions in decreasing order
of the corresponding eigenvalues. These functions are well defined for any domain D. In the
particular case where D is a fundamental period, D = [0, 1]d say, and a is a stationary and
D-periodic random field, i.e. its covariance function has the form Ca(x, y) = A(x − y) where
A is D-periodic, then T is a convolution operator and the KL basis is the Fourier basis. In
general, the KL expansion has properties which emulate those of Fourier series. In particular,
the decay of the terms and the rate of convergence of the KL expansion are dictated by the
average regularity of the field a measured by the smoothness properties of Ca. We refer to [21]
for such results when Ca is analytic and to [20] for similar results with less regular kernels.

In the case of a one-dimensional Fourier expansion,

a(x, ω) = a(x) +
∑
k∈Z

â(k, ω)ei2πkx,

it is known that if the function a(·, ω) − a is in Lip(s, L1) for some s > 1, then its Fourier
coefficients satisfy the decay estimate

|a(k, ω)| ≤ C|k|−s, |k| ≥ 1,
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with C depending on the Lip(s, L1)-norm of a(·, ω) − a. Assuming that this norm is bounded
independently of ω and reindexing the expansion on j ≥ 1 with the normalization (2.1), we thus
obtain

‖ψj‖L∞(D) ≤ Cj−s, j = 1, 2, ... (2.5)

Therefore `p summability of the sequence (‖ψj‖L∞(D))j≥1 is ensured when s > 1
p . In the multi-

variate case, the rate of decay (2.5) is modified to j−s/d. In summary, Assumption 2 and 3 can
be derived from the smoothness properties on the field a.

In the nonperiodic case, the KL eigenfunctions are in general not analytically available.
However, approximations of them can be computed efficiently numerically; see, e.g. [18] for
algorithms based on fast multipole approximations of covariance operators T when Ca(x, y) is
analytic for x 6= y. There exist, however, many other basis expansions for which similar decay
properties hold when a has some smoothness, in particular wavelet expansions which can be
constructed on fairly arbitrary domains, see [4] for a general treatment. One can carry out for
wavelet bases, the same analysis as described above for the Fourier basis. For example, in the
univariate case, the decay rate (2.5) is now satisfied if a(·, ω)− ā belong to the Hölder space Cs

with their Cs-norm bounded independently of ω.
In summary, the basis ψj should be taken with an eye towards two issues. The first is that it

should be easy to manipulate numerically. The second is that the infinite dimensional vector y
has components yj which decrease rapidly as j grows, with the rate of decay being determined
by the smoothness of the field a.

For each y ∈ U , we define

a = a(x, y) := ā+
∑
j≥1

yjψj(x), x ∈ D, y ∈ U. (2.6)

Because of Assumption 2 , the series (2.6) converges absolutely and uniformly on D × U .
Notice that a(x, y) is defined for all y ∈ U and not just for the y(ω) which are the image of some
ω ∈ Ω. In particular, we have

a(x, y) ≥ amin, (2.7)

for all y ∈ U with amin defined by (2.3). In the sequel, we will use a to denote both a(x, ω)
and a(x, y) but which of these is being employed will be clear from the context. Similarly y will
denote both the stochastic basis coefficients y(ω) as well as a general point in the parameter
space U .

3 Probability spaces on U

Since U is an infinite product of the intervals [−1, 1] some care must be taken in defining
probability measures on U . We shall have need for two measures. The first of these is the
infinite tensor product measure dµ of the univariate uniform probability measures on [−1, 1]:

dµ(y) = ⊗j≥1dyj/2. (3.1)
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Recall that the sigma algebra for dµ is generated by the finite rectangles
∏∞
j=1 Sj , where only

a finite number of the Sj are different from [−1, 1] and those that are different are intervals
contained in [−1, 1]. Then (U,Θ, dµ) is a probability space.

We shall also need a measure ρ defined on U which is induced by the mapping ω → y(ω).
This measure is defined on the same sigma algebra Θ as for the uniform measure discussed
above. Consider any finite rectangle ⊗∞j=1Sj , where Sj = [−1, 1] for all j ≥ n for some n. We
define

ρ(S) :=
n∏
j=1

P{ω : yj(ω) ∈ Sj}. (3.2)

Then, ρ extends to a measure defined on all sets in the sigma algebra Θ. This gives the measure
space (U,Θ, ρ). Given these measure spaces, we introduce for 1 ≤ p ≤ ∞ the Banach spaces
Lp(U, dµ) and Lp(U, dρ). For the (separable) Hilbert space V , we denote by Lp(U, V, dµ) and
Lp(U, V, dρ) the corresponding Bochner spaces of p-summable mappings from U to V , equipped
with their corresponding norms. For example,

‖v‖2L2(U,V,dρ) :=
∫
U

‖v(·, y)‖2V dρ(y) =
∫
U

(∫
D

|∇v(x, y)|2dx
)
dρ(y). (3.3)

Here and in the following, ∇ is understood to be applied in the x variable.
We shall also need certain orthogonal bases, built from Legendre polynomials, for some of

these spaces. Let (Ln)n≥0 be the univariate Legendre polynomials normalized according to

1∫
−1

|Ln(t)|2dt
2

= 1, (3.4)

or equivalently
max
t∈[−1,1]

|Ln(t)| =
√

2n+ 1. (3.5)

Recall that Ln is an algebraic polynomial of degree n and the family (Ln)n≥0 is a complete
orthogonal system for L2[−1, 1].

We introduce the countable set F of all sequences ν = (νj)j≥1 of nonnegative integers such
that only finitely many νj are non-zero. For all ν ∈ F , we use the notation

|ν| :=
∑
j≥1

νj = ‖ν‖`1 ,

and
ν! =

∏
j≥1

νj !, ν ∈ F .

We define the tensorized Legendre polynomials by

Lν(y) =
∏
j≥1

Lνj (yj). (3.6)

By construction, the family (Lν)ν∈F forms an orthonormal system in L2(U, dµ). Since L0(t) = 1,
and any ν ∈ F has only a finite number of nonzero entries, the function Lν(y) only depends on
finitely many yj (namely those j such that νj 6= 0).
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The family (Lν)ν∈F is easily seen to be complete in L2(U, dµ). Indeed, any function in
L2(U, dµ) can be approximated to any given tolerance by a finite linear combination of charac-
teristic functions of finite rectangles and each characteristic function of a finite rectangle can be
approximated by polynomials to any prescribed accuracy. Therefore (Lν)ν∈F is an orthonormal
basis of L2(U, dµ). In turn, each v ∈ L2(U, V, dµ) has a representation

v =
∑
ν∈F

vνLν , where vν =
∫
U

g(·, y)Lν(y)dµ(y) ∈ V (3.7)

and ‖v‖L2(U,V,dµ) = ‖(‖vν‖V )‖`2(F).

4 Parametric expansion of u

Suppose that we have an orthogonal system (ψj)j≥0 such that Assumption 2 holds and a is
defined by (2.6). We denote by u(x, y) the solution to

−∇ · (a∇u) = f in D, u|∂D = 0, (4.1)

where D ⊂ Rd is the Lipschitz domain introduced earlier. Since Assumption 2 implies the lower
bound (2.7), the equations (4.1) are uniformly elliptic in y ∈ U , and we have

‖u‖L∞(U,V ) = ‖u‖L∞(U,V ;dµ) := sup
y∈U
‖u(·, y)‖V ≤ B (4.2)

with B as in (1.4). Throughout in what follows, the expression L∞(U, V ) shall be understood
in the sense (4.2), also for different choices of the space V .

In this section, we fix f and examine the smoothness of u as a function of the parameter
vector y ∈ U . We shall establish generic a-priori bounds for ‖∂νyu‖L∞(U,V ). These bounds could
possibly be improved when working with a specific orthogonal system (ψj)j≥1 such as a wavelet
system. However, at this stage we do not want to complicate the presentation by pursuing such
avenues.

As a first step, we prove the existence in V of the partial derivatives ∂νyu at any y ∈ U . For
this purpose, we need the following stability result.

Lemma 4.1 If u and ũ are solutions of (1.3) with the same right hand side f and with coeffi-
cients a and ã, respectively, and if these coefficients both satisfy the assumption (1.2) with the
same lower bound amin, then

‖u− ũ‖V ≤
‖f‖V ∗
a2

min

‖a− ã‖L∞(D). (4.3)

Proof: Substracting the variational formulations (1.3) for u and ũ, we find that for all v ∈ V ,

0 =
∫
D

a∇u · ∇v −
∫
D

ã∇ũ · ∇v =
∫
D

a(∇u−∇ũ) · ∇v +
∫
D

(a− ã)∇ũ · ∇v. (4.4)

10



Therefore w = u− ũ is the solution of
∫
D

a∇w ·∇v = L(v) where L(v) :=
∫
D

(a− ã)∇ũ ·∇v. Hence

‖w‖V ≤
‖L‖V ∗
amin

,

and we obtain (4.3) since

‖L‖V ∗ = max
‖v‖V =1

|L(v)| ≤ ‖a− ã‖L∞(D)‖ũ‖V ≤ ‖a− ã‖L∞(D)
‖f‖V ∗
amin

.

�

Theorem 4.2 At any y ∈ U , the function y 7→ u(y) admits a partial derivative ∂νyu(y) ∈ V for
any ν ∈ F .

Proof: We start by proving the existence of the first order derivative ∂νyju(y) for any j ≥ 1 and
y ∈ U . We denote by ej the Kronecker sequence with 1 at index j and 0 at other indices. For
h ∈ R \ {0} we consider the difference quotient

wh(y) =
u(y + hej)− u(y)

h
. (4.5)

We notice that this quotient is well defined for h small enough: if |h|‖ψj‖L∞(D) ≤ amin
2 , we

clearly have for all y ∈ U ,

amin

2
≤ a(x, y + hej) ≤ amax +

amin

2
, x ∈ D,

and therefore u(y+ hej) is well defined as an element of V . For such a small enough h, we have
for all v ∈ V ,

0 =
∫
D

a(x, y + hej)∇u(x, y + hej) · ∇v(x)dx−
∫
D

a(x, y)∇u(x, y) · ∇v(x)dx

= h
∫
D

a(x, y)∇wh(x, y) · ∇v(x)dx+
∫
D

(a(x, y + hej)− a(x, y))∇u(x, y + hej) · ∇v(x)dx

= h
∫
D

a(x, y)∇wh(x, y) · ∇v(x)dx+ h
∫
D

ψj(x)∇u(x, y + hej) · ∇v(x)dx

and therefore wh(y) is the unique solution to∫
D

a(x, y)∇wh(x, y) · ∇v(x)dx = Lh(v), for all v ∈ V,

where Lh : v → Lh(v) := −
∫
D

ψj(x)∇u(x, y + hej) · ∇v(x)dx is a continuous, linear functional

on V . The linear functional Lh(·) varies continuously in V ∗ with h as h tends to 0: indeed, we
have for all v ∈ V ,

|Lh(v)− L0(v)| = |
∫
D

ψj(∇u(y + hej)−∇u(y)) · ∇v| ≤ ‖ψj‖L∞(D)‖u(y + hej)− u(y)‖V ‖v‖V ,

and since the stability estimate (4.3) implies

‖u(y + hej)− u(y)‖V = ‖∇u(y + hej)−∇u(y)‖L2(D) ≤ |h|‖ψj‖L∞(D)
4‖f‖V ∗
a2

min

,
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it follows that Lh converges towards L0 in V ∗ as h → 0. Therefore wh converges in V towards
w0, which is the solution to∫

D

a(x, y)∇w0(x) · ∇v(x)dx = L0(v), for all v ∈ V.

Hence ∂yju(y) = w0 exists in V and is the unique solution of the variational problem∫
D

a(x, y)∇∂yju(x, y)∇v(x)dx = −
∫
D

ψj(x)∇u(x, y)∇v(x)dx, for all v ∈ V. (4.6)

We notice that this problem is obtained by formally differentiating the variational formulation:
given f ∈ V ∗ and y ∈ U , find u(·, y) ∈ V such that∫

D

a(x, y)∇u(x, y)∇v(x)dx =
∫
D

f(x)v(x)dx , for all v ∈ V (4.7)

with respect to the variable yj . By the same reasoning, we can inductively derive the existence
in V of higher order derivatives ∂νyu(y). These derivatives are solutions of variational problems
obtained by further differentiating (4.7). �

We now estimate the norms ‖∂νyu‖L∞(U,V ), For this purpose, we introduce the following
notation. If α = (αj)j≥1 is a sequence of positive numbers, we define for all ν ∈ F

αν :=
∏
j≥1

α
νj
j .

We also use the following sequence b throughout the remainder of this paper:

b = (bj)∞j=1, bj :=
‖ψj‖L∞(D)

amin
. (4.8)

Theorem 4.3 With the constant B as in (1.4), we have

‖∂νyu‖L∞(U,V ) ≤ B|ν|!bν ∀ν ∈ F . (4.9)

Proof: As a first step, we study the variational problems satisfied by the partial derivatives
∂νy (y). We claim that these problems have the general recursive form∫

D

a(x, y)∇∂νyu(x, y)∇v(x)dx = −
∑

{j: νj 6=0}

νj

∫
D

ψj(x)∇∂ν−ejy u(x, y)∇v(x)dx, (4.10)

where ej is again the Kronecker sequence with value 1 at position j and 0 elsewhere.
We prove (4.10) by induction on |ν|. When |ν| = 1 this is (4.6). For |ν| > 1, let k be any

index such that νk 6= 0, we define ν̃ = ν − ek which satisfies |ν̃| = |ν| − 1. By the induction
hypothesis, we have for all v ∈ V∫

D

a(x, y)∇∂ν̃yu(x, y)∇v(x)dx+
∑

{j: ν̃j 6=0}

ν̃j

∫
D

ψj(x)∇∂ν̃−ejy u(x, y)∇v(x)dx = 0,

12



where ν̃j = νj if j 6= k and ν̃k = νk − 1. Differentiating with respect to yk, we obtain

0 =
∫
D

a(x, y)∇∂νyu(x, y)∇v(x)dx+
∫
D

ψk(x)∇∂ν−eky u(x, y)∇v(x)dx

+
∑

{j 6=k: νj 6=0}

νj

∫
D

ψj(x)∇∂ν−ejy u(x, y)∇v(x)dx+ (νk − 1)
∫
D

ψk(x)∇∂ν−eky u(x, y)∇v(x)dx,

which is equivalent to (4.10). Selecting in (4.10) the function v(x) = ∂νyu(x, y) ∈ V , and using
both ellipticity and continuity of the bilinear form, we obtain

amin‖∂νyu(·, y)‖2V ≤
∫
D

a(x, y)|∇∂νyu(x, y)|2dx

= −
∑

{j:νj 6=0}

νj

∫
D

ψj(x)∇∂ν−ejy u(x, y)∇∂νyu(x, y)dx

≤
∑

{j:νj 6=0}

νj‖ψj‖L∞(D)‖∂νyu(·, y)‖V ‖∂
ν−ej
y u(·, y)‖V ,

and therefore
‖∂νyu(·, y)‖V ≤

∑
{j:νj 6=0}

νjbj‖∂
ν−ej
y u(·, y)‖V . (4.11)

Using (4.11), we now prove (4.9) by induction on |ν|. For |ν| = 0 this bound is simply
‖u(·, y)‖V ≤ B with B as in (1.4) which is known from (4.2). For |ν| > 0, we combine (4.11)
with the induction hypothesis. This yields

‖∂νyu(·, y)‖V ≤ B
∑

{j: νj 6=0}

νjbj(|ν| − 1)!bν−ej = B(
∑

{j: νj 6=0}

νj)(|ν| − 1)!bν = B|ν|!bν ,

which concludes the proof. �

5 Galerkin approximation

In this section, we shall introduce a numerical approach for the computation of u(x, y). We
assume that we have full knowledge of dρ (which may or may not be the case in a given applica-
tion). Obviously u belongs to L2(U, V, dρ) (since ‖u(·, y)‖V is uniformly bounded with respect
to y ∈ U) and it can be defined as the unique solution of the variational problem:

Find u ∈ L2(U, V, dρ) such that B(u, v) = F (v) ∀v ∈ L2(U, V, dρ), (5.1)

where

B(u, v) :=
∫
U

(∫
D

a(x, y)∇u(x, y) · ∇v(x, y)dx
)
dρ(y) and F (v) :=

∫
U

(∫
D

f(x)v(x, y)dx
)
dρ(y).

(5.2)
For any subset Λ ⊂ F of finite cardinality, we define the approximation space

XΛ := {vΛ(x, y) =
∑
ν∈Λ

vν(x)Lν(y) ; vν ∈ V },
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where {Lν}ν∈F is the basis of Legendre polynomials. Note that XΛ ⊂ L∞(U, V ) ⊂ L2(U, V, dρ).
We define the Galerkin approximation uΛ =

∑
ν∈Λ uνLν ∈ XΛ to u as the unique solution to

the problem: find

uΛ ∈ XΛ such that B(uΛ, vΛ) = F (vΛ) ∀vΛ ∈ XΛ. (5.3)

Just as for the MC method, the evaluation of uΛ requires the computation of N deterministic
functions uν where N := #(Λ), and the computation of these functions requires in addition
some spatial discretization. We postpone discussion of the spatial discretization until §6 and
first focus our analysis on the discretization in the y variable. Namely, we search for appropriate
choices of Λ with the goal of obtaining error estimates of the form

‖u− uΛ‖L2(U,V,dρ) ≤ CN−r, (5.4)

for the largest possible r > 0.

Remark 5.1 We can derive from uΛ an approximation to the mean field u = E(u) which are
given by

uΛ = E(uΛ) =
∑
ν∈Λ

eνuν , (5.5)

with the ν-th moments eν := E(Lν(y)) =
∫
U

Lν(y)dρ(y) (although the mean here is taken with

respect to y and the measure dρ it is easily seen that it results in the same means u as averaging
with respect to ω and P ) . By the triangle and Cauchy-Schwarz inequalities,

‖u− uΛ‖V ≤
∫
U

‖u(·, y)− uΛ(·, y)‖V dρ(y) ≤ ‖u− uΛ‖L2(U,V,dρ). (5.6)

Therefore the rate of the spectral Galerkin approximation (5.3) will outperform the rate (1.7) of
the MC estimate (1.6) for the mean field E(u) in terms of the number N of coefficients in V to
be determined, if r > 1

2 in (5.4).

Remark 5.2 Our approach implicitly assumes that we have the full knowledge of ρ or equiva-
lently of P , in contrast to the MC method which only needs a sample of independent realizations.
In the case where we only have such a sample (y1, · · · , yM ) ∈ UM at our disposal, we can adapt
our approach by solving

BM (uΛ, vΛ) = FM (vΛ), (5.7)

in place of (5.3), where BM and FM are defined by replacing the integrals of the type
∫
f(y)dρ(y)

in (5.2) by their empirical counterpart 1
M

∑M
i=1 f(yi). We shall not embark in the error analysis

of this variant and proceed with the assumption that ρ is known to us.

Remark 5.3 An alternative to Galerkin discretization would have been to start from an or-
thonormal basis of L2(U, dρ) instead of L2(U, dµ). However such a basis is not always simple to
construct when ρ is not separable and therefore we maintain the choice of the Legendre polyno-
mials even when ρ differs from µ. As we shall see later, sharper error estimates can be obtained
in the particular case where ρ = µ, i.e. when the random variables yj(ω) are independent and
uniformly distributed on [−1, 1].
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Remark 5.4 An alternate approach to Galerkin discretization is collocation: find uΛ ∈ XΛ

such that ∫
D

a(x, y)∇uΛ(x, y)∇v(x)dx =
∫
D

f(x)v(x)dx, (5.8)

for all v ∈ V and for all y ∈ SΛ where SΛ ⊂ U is a set such that #(SΛ) = N . This approach is
however more difficult to analyze, since its well-posedness is strongly tied to an optimal choice
of Sλ.

We begin our error analysis by observing that according to Cea’s lemma (see e.g. [3]), we
have the estimate

‖u− uΛ‖L2(U,V,dρ) ≤ C1 inf
vΛ∈XΛ

‖u− vΛ‖L2(U,V,dρ), (5.9)

where C1 :=
√

amax
amin

. In order to proceed further, we introduce the exact expansion of u in the

basis (Lν)ν∈F (see (3.7)):

u(x, y) =
∑
ν∈F

cν(x)Lν(y) where cν :=
∫
U

u(·, y)Lν(y)dµ(y) ∈ V.

We infer from (5.9) that

‖u− uΛ‖L2(U,V,dρ) ≤ C1‖u−
∑
ν∈Λ

cνLν‖L2(U,V,dρ). (5.10)

The right hand side of (5.10) can be bounded in different ways depending on the properties of
ρ with respect to µ.

• Case 1: if ρ = µ, we can invoke Parseval’s equality which yields

‖u−
∑
ν∈Λ

cνLν‖L2(U,V,dρ) =
(∑
ν /∈Λ

‖cν‖2V
) 1

2
,

and therefore

‖u− uΛ‖L2(U,V,dρ) ≤ C1

(∑
ν /∈Λ

‖cν‖2V
) 1

2
. (5.11)

We also reach (5.11) up to a change in the constant C1 if dρ = wdµ with w ∈ L∞(U).

• Case 2: in the case of general ρ, we can still write

‖u−
∑
ν∈Λ

cνLν‖L2(U,V,dρ) ≤ ‖u−
∑
ν∈Λ

cνLν‖L∞(U,V ),

so that by triangle inequality, we obtain

‖u− uΛ‖L2(U,V,dρ) ≤ C1

∑
ν /∈Λ

‖cν‖V ‖Lν‖L∞(U). (5.12)
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The estimates (5.11) and (5.12) suggest to choose for Λ the sets of indices ν corresponding
respectively to the N largest values of ‖cν‖V and ‖cν‖V ‖Lν‖L∞(U). Of course the exact value
of ‖cν‖V is unknown, and therefore a more reasonable objective is to build Λ based on a-priori
bounds for ‖cν‖V . We shall derive such bounds in the next section. The process of approximating
a sequence by retaining its N largest terms is a simple instance of nonlinear approximation (see
[7] for a general survey) known as best N -term approximation. The rate of convergence of this
process is well understood, thanks to the following result of Stechkin whose proof is elementary
(e.g. [7]).

Lemma 5.5 Let 0 < p ≤ q and α = (αν)ν∈F be a sequence in `p(F). If FN is the set of indices
corresponding to the N largest values of |αν |, we have

(
∑
ν /∈FN

|αν |q)
1
q ≤ ‖α‖`p(F)N

−r,

where r := 1
p −

1
q ≥ 0.

The a-priori bounds that we shall obtain in the next section will also be used to analyze the
summability of the sequence (‖cν‖V ) in `2 and of (‖cν‖V ‖Lν‖L∞(U)) in `1, and therefore derive
the rate of convergence r > 0 in (5.4) based on the estimates (5.11)-(5.12) combined with the
above lemma.

6 The decay of the Legendre coefficients of u

The decay of the Legendre coefficients of a function depends on its smoothness. For example,
one simple way to relate cν to ∂νyu is through Rodrigues’ formula which reads

Ln(t) =
(−1)n

√
2n+ 1

2nn!

( d
dt

)n
((1− t2)n),

when the Legendre polynomials are normalized according to (3.4). For a function f(t) of one
variable which is n-times continuously differentiable, we can apply n integrations by parts and

obtain a bound for the coefficient cn :=
1∫
−1

f(t)Ln(t)dt2 :

|cn| =
√

2n+ 1
2nn!

|
1∫
−1

(1− t2)nf (n)dt

2
| ≤ In

2nn!
‖f (n)‖L∞([−1,1]),

with

In :=
√

2n+ 1

1∫
−1

(1− t2)n
dt

2
=
√

2n+ 1
n∏
k=1

2k
2k + 1

if n ≥ 1, I0 := 1.

The sequence In is uniformly bounded. However, it will be sufficient for us to employ the crude
bound In ≤ In1 with I1 = 2

3

√
3 ≈ 1.155, and therefore obtain

|cn| ≤
βn

n!
‖f (n)‖L∞([−1,1]),
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with
β := I1/2 = 1/

√
3 ≈ 0.577. (6.1)

This fixes β for the remainder of this paper. Applying similar arguments to u(x, y) in each
variable yj yields

‖cν‖V ≤
β|ν|

ν!
‖∂νyu‖L∞(U,V ). (6.2)

We estimate the quantities ‖cν‖V ‖Lν‖L∞(U) in a similar way, replacing In by Jn =
√

2n+ 1In
and using the crude bound Jn ≤ 2n. This leads to

‖cν‖V ‖Lν‖L∞(U) ≤
1
ν!
‖∂νyu‖L∞(U,V ). (6.3)

Combining (4.9) with (6.2) and (6.3), we obtain the following.

Corollary 6.1 Let b = (bj)j≥1 and d = (dj)j≥1 be defined by bj := ‖ψj‖L∞(D)

amin
and dj = βbj. We

then have with B as in (1.4) for all ν ∈ F

‖cν‖V ≤ B
|ν|!
ν!
dν (6.4)

and
‖cν‖V ‖Lν‖L∞(U) ≤ B

|ν|!
ν!
bν . (6.5)

7 Sequence approximation

As explained at the end of §5, the rate of convergence N−r of the spectral approach based on the
optimal choice of Λ is related to the properties of `p summability of the multi-indexed sequences
(‖cν‖V )ν∈F and (‖cν‖V ‖Lν‖L∞(U))ν∈F . In view of the estimates obtained above for ‖cν‖V and
‖cν‖V ‖Lν‖L∞(U), we need to study the `p summability of multi-indexed sequences which have
the general form

(
|ν|!
ν!
αν)ν∈F (7.1)

where α = (αj)j≥1 is a sequence of positive numbers. Since the rate is either given by r = 1
p −

1
2

or r = 1
p −1 (depending on the relation between the measure ρ and the uniform measure µ) and

since we are interested in understanding under which circumstances r may be larger than 1
2 , we

need to consider values of p smaller than 1.
In this section, we establish simple necessary and sufficient conditions on a sequence α for

the `p summability of the multi-indexed sequence (7.1). Our first result deals with sequences
which have the simpler form (αν)ν∈F .

Lemma 7.1 For p ≤ 1, the sequence (αν)ν∈F belongs to `p(F) if and only if α ∈ `p(N) and
‖α‖`∞(N) < 1. Under these conditions, we have

‖(αν)‖`p(F) ≤ exp{
‖α‖p`p(N)

p(1− ‖α‖p`∞(N))
}. (7.2)
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Proof: Assume first that (αν)ν∈F belongs to `p(F). By remarking that for ν = ej the Kroeneker
sequence αν = αj , we find that α ∈ `p(N) with ‖α‖`p(N) ≤ ‖(αν)‖`p(F). For each fixed j, the
sequence (αν)ν∈F contains (αnj )n≥0 as a subsequence corresponding to the indices ν = nej and
hence we must have αj < 1. From the fact that α ∈ `p(N), we see that αj → 0 as j → +∞ and
hence ‖α‖`∞(N) < 1.

Conversely, if α ∈ `p(N) and ‖α‖`∞(N) < 1, we can write

‖(αν)‖p`p(F) =
∑
ν∈F

(αν)p =
∑
ν∈F

∏
j≥1

α
pνj
j =

∏
j≥1

∑
n≥0

αnpj =
∏
j≥1

1
1− αpj

,

where we have used that αj < 1 for all j ≥ 1. In order to prove the convergence of the infinite
product, we remark that

1
1− αpj

≤ 1 + καpj , j = 1, 2, ... where κ :=
1

1− ‖α‖p`∞(N)

so that we can write

log

∏
j≥1

1
1− αpj

 ≤∑
j≥1

log(1 + καpj ) ≤ κ
∑
j≥1

αpj =
‖α‖p`p(N)

1− ‖α‖p`∞(N)

which implies the bound (7.2). �

We next turn to multi-indexed sequences which have the form (7.1).

Theorem 7.2 For p ≤ 1, the sequence ( |ν|!ν! α
ν)ν∈F belongs to `p(F) if and only if ‖α‖`1(N) < 1

and α ∈ `p(N). One has the estimate

‖( |ν|!
ν!
αν)‖`p(F) ≤

2
η

exp
(2(1− p)(J(η) + ‖α‖p`p(N))

p2η

)
, (7.3)

where η := (1− ‖α‖`1(N))/2 and J(η) is the smallest positive integer such that
∑

j>J |αj |p ≤
η
2 .

Proof: First notice that ‖( |ν|!ν! α
ν)‖`p(F) does not change if we rearrange the entries in α and

therefore we may without loss of generality assume that the nonnegative sequence α is decreasing.
For p = 1, we have

‖( |ν|!
ν!
αν)‖`1(F) =

∞∑
k=0

(
∞∑
j=1

αj)k =
1

1− ‖α‖`1(N)
, (7.4)

which gives the theorem in this case. So we consider further only the case p < 1.
Assuming that ( |ν|!ν! α

ν)ν∈F belongs to `p(F), we notice that the sequence ( |ν|!ν! α
ν)ν∈F contains

α = (αj)j≥1 as subsequence corresponding to the indices ν = ej , and therefore the `p summability
of α is necessary. On the other hand, since p ≤ 1, the sequence ( |ν|!ν! α

ν)ν∈F belongs to `p(F)
only if it is summable, i.e. it belongs to `1(F). Hence, (7.4) gives that ‖α‖`1 < 1 is necessary.

Conversely, let α be a sequence such that α ∈ `p(N) and ‖α‖`1(N) < 1, we shall construct a
factorization of α as αj = γjδj , j = 0, 1, . . ., with sequences γ and δ satisfying

‖γ‖`1(N) < 1, ‖δ‖`∞(N) < 1, ‖δ‖`p′ (N) <∞, p′ := p/(1− p) > 0. (7.5)
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Having such a factorization of α at hand, we estimate∑
ν∈F

(
|ν|!
ν!
αν)p =

∑
ν∈F

(
|ν|!
ν!
γν)pδpν

≤
(∑
ν∈F

|ν|!
ν!
γν
)p(∑

ν∈F
δ

p
1−pν

)1−p
=
∥∥∥∥( |ν|!ν!

γν
)∥∥∥∥p

`1(F)

‖(δν)‖p
`p′ (F)

≤ [1− ‖γ‖`1(N)]
−p exp

((1− p)||δ‖p
′

`p′ (N)

1− ‖δ‖p
′

`∞(N)

)
(7.6)

where we have first used Hölder’s inequality and then we employed (7.4) on the first term and
Lemma 7.1 (with p′ in place of p and δ in place of α) on the second.

It remains to construct the factor sequences δ and γ satisfying (7.5). To this end, we observe
that for every η > 0, there exists J(η) such that∑

j>J(η)

|αj |p ≤
η

2
.

Choose
η := (1− ‖α‖`1(N))/2.

Then 0 < η < 1/2 and we define the factor sequences γ and δ by

γj := (1 + η)αj and δj :=
1

1 + η
j ≤ J(η), (7.7)

and
γj = αpj and δj = α1−p

j , j > J(η). (7.8)

Then we read off (7.7) and (7.8) that

‖δ‖`∞(N) ≤ max{(1 + η)−1, ‖α‖1−p`∞(N)} ≤ max{(1 + η)−1, ‖α‖1−p
`1(N)
} < 1. (7.9)

We also have

‖γ‖`1(N) ≤ (1 + η)‖α‖`1(N) +
∑

j>J(η)

|αj |p ≤ (1 + η)(1− 2η) +
η

2
≤ 1− η

2
< 1. (7.10)

Finally, we obtain with p′ := p/(1− p):

‖δ‖p
′

`p′ (N)
≤ J(η)(1 + η)−p

′
+ ‖α‖p`p(N) <∞. (7.11)

In order to obtain the bound (7.3), we use (7.6) which states that

‖( |ν|!
ν!
αν)‖`p(F) ≤ [1− ‖γ‖`1(N)]

−1 exp
( (1− p)‖δ‖p

′

`p′ (N)

p(1− ‖δ‖p
′

`∞(N))

)
, (7.12)

From (7.10), we find that

[1− ‖γ‖`1(N)]
−1 ≤ 2

η
. (7.13)
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From (7.9), we infer

‖δ‖`∞(N) ≤ max{(1 + η)−1, (1− 2η)1−p} ≤ max{1− η

2
, 1− 2(1− p)η} ≤ 1− (1− p)η

2
,

where we have used the fact that η ≤ 1
2 and therefore

1− ‖δ‖p
′

`∞(N) ≥ p
′(1− p)η

2
=
p

2
η. (7.14)

From (7.11), we infer

‖δ‖p
′

`p
′
(N)
≤ J(η)(1 + η)−p

′
+ ‖α‖p`p(N) ≤ J(η) + ‖α‖p`p(N). (7.15)

Inserting the estimates (7.13), (7.15) and (7.14) inside (7.12) we obtain (7.3). �

We now combine the above result with the estimates (6.4) and (6.5), taking as α the sequences
b and d. Note that according to (2.4), these sequences respectively satisfy ‖b‖`1 ≤ κ and
‖d‖`1 ≤ βκ under Assumption 2. We thus obtain the following.

Corollary 7.3 Assume that Assumption 3 holds for some p ≤ 1.
(i) If moreover Assumption 2 holds with κ := 1

β , then (‖cν‖V )ν∈F ∈ `p(F)
(ii) If moreover Assumption 2 holds with κ := 1, then (‖cν‖V ‖Lν‖L∞(U))ν∈F ∈ `p(F).

Combining Corollary 7.3 with (5.11) and (5.12) and using Lemma 5.5, we obtain the following
error estimates between u and uΛ.

Corollary 7.4 Assume that Assumption 3 holds for some p ≤ 1.
(i) If dρ = wdµ with w ∈ L∞(U) and if Assumption 2 holds with κ := 1

β , then there exists a
sequence (ΛN )N∈N ⊂ F of index sets Λ of cardinality N = 1, 2, ... such that

‖u− uΛN ‖L2(U,V,dρ) ≤ CN−r, r =
1
p
− 1

2
. (7.16)

(ii) For a general ρ, if Assumption 2 holds with κ := 1, then there exists a sequence (ΛN )N∈N ⊂ F
of index sets ΛN of cardinality N = 1, 2, ... such that

‖u− uΛN ‖L2(U,V,dρ) ≤ CN−r, r =
1
p
− 1. (7.17)

Remark 7.5 In the case when ρ = wdµ with w ∈ L∞, we always have r ≥ 1
2 and therefore the

MC rate (1.7) is outperformed as soon as the ψj satisfy the required summability condition.

Remark 7.6 In the case where (ψj)j≥1 is the Karhúnen-Loève expansion, decay estimates on
‖ψj‖L∞ ensuring its `p-summability are available. These estimates depend on the smoothness
properties of the covariance function Ca(x, y), see [20, 18].
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Remark 7.7 It is obviously interesting to estimate the size of the constants C in the error
bounds (7.16) and (7.17). The bound (7.3) on

∥∥∥( |ν|!ν! α
ν
)∥∥∥

`p(F)
obtained in Theorem 7.2 allows

us, via Lemma 5.5, to estimate C in (7.16) and (7.17) in terms of the summability properties
of the Karhúnen-Loève expansion (1.8) of the input data. However, this bound is not easily
computable since it involves the quantity J(η) which might actually be arbitrarily large under no
assumption other than α ∈ `p(N). More can be said under the (slightly) stronger assumption
that α ∈ `q(N) for some q < p. Assuming without loss of generality that α is non-increasing, we
find from Lemma 5.5 that ∑

j>J

|αj |p ≤ ‖α‖p`q(N)J
q−p
q .

We therefore find that
J(η) ≤ (

η

2‖α‖p`q(N)

)
q
q−p ,

which leads to the computable bound

‖( |ν|!
ν!
αν)‖`p(F) ≤

2
η

exp
(4(1− p)(( η

2‖α‖p
`q(N)

)
q
q−p + ‖α‖p`p(N))

p2η

)
. (7.18)

8 Space discretization

Up to this stage, our results allow us to draw a comparison between the convergence rate of MC
and deterministic methods in terms of the number N of deterministic unknown functions which
need to be determined in such methods. The actual computation of these unknown functions
involves space discretization, which is the source of additional approximation error.

The purpose of this last section is to analyze these aspects in order to draw a more exact
comparison between the convergence rate of the two methods, now expressed in terms of the
total number of degrees of freedom Ndof . For the sake of simplicity, we shall focus on space
discretizations by the finite element method, although our discussion can be extended to other
types of discretization.

In order to establish convergence rates in the above sense, we need to give regularity estimates
of the solution u in the physical domain. While this is classical for linear, elliptic equations, we
require a-priori estimates uniform in the parameters y ∈ U .

For this purpose, additional assumptions are needed. We first recall that when the domain
D is either a smooth domain or a convex polyhedron with straight faces, the solution v to the
Laplace equation

−∆v = f in D, v|∂D = 0, (8.1)

with f ∈ L2(D) belongs to H1
0 (D) ∩ H2(D). This is well-known to yield a convergence rate

for the finite element method on families of shape-regular, quasiuniform meshes of meshwidth
h: if (Vh)h>0 is a one parameter family of finite element spaces associated to a family of shape-
regular and quasiuniform partitions ofD into simplices of meshwidth h > 0, we have the standard
approximation estimate

inf
vh∈Vh

‖v − vh‖V ≤ Ch‖v‖H2(D), (8.2)
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i.e. convergence rate O(M−
1
d ) with M := dim(Vh) ∼ h−d. The H2-smoothness estimate is

lost when working on non-convex polyhedrons, however it is well known that the rate M−
1
d

may sometimes be retained by using continuous, piecewise linear finite elements on certain
nonuniform meshes.

This is in particular the case on 2-d polygonal domains with reentrant corners. In order to
include this case in our analysis, we introduce the following general assumption.

Assumption 4. The domain D is such that the subspace

W := {v ∈ V ; ∆v ∈ L2(D)},

equipped with the norm ‖v‖W := ‖∆v‖L2 has the approximation property

inf
vM∈VM

‖v − vM‖V ≤ CaM−s‖v‖W , (8.3)

for some s > 0, where (VM )M>0 is a family of finite element spaces such that dim(VM ) ≤M .

Under Assumption 4, the finite element approximation uM of the solution u of (8.1) satisfies

‖u− uM‖V ≤ CaM−s‖f‖L2(D) (8.4)

When D is smooth or convex, the space W coincides with H2(D) ∩ H1
0 (D), and s = 1

d when
VM is chosen as space of continuous, piecewise linear finite elements on a family of regular,
quasiuniform simplicial meshes.

In order to establish similar approximation estimates on the solution of the problem (1.1)
with spatially inhomogeneous random coefficients, we need a smoothness assumption on these
coefficients.

Assumption 5. There exists a constant Cr > 0 such that

‖∇a‖L∞(U,L∞(D)) := sup
y∈U
‖∇a(·, y)‖L∞(D) ≤ Cramin. (8.5)

Since (1.1) can be rewritten

−∆u =
1
a

[f +∇a · ∇u] =: g,

we can estimate

‖g‖L2 ≤
1

amin
[‖f‖L2(D) + Cr‖f‖V ∗ ] ≤

1 + CrCP
amin

‖f‖L2(D), (8.6)

where CP denotes the Poincaré constant of D. We thus obtain from Assumption 5 a smoothness
estimate for the solution of (1.1):

‖u‖L∞(U,W ) ≤ C2 :=
1 + CrCP
amin

‖f‖L2(D). (8.7)
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For comparison purposes, we now establish a convergence estimate for the MC methods with
space discretization. Let M be fixed and for each instance ai, let ui,M ∈ VM be the Galerkin
projection of ui onto VM which is defined by

find ui,M ∈ VM :
∫
D

ai∇ui,M∇vM =
∫
D

fvM for all vM ∈ VM .

We define the corresponding approximation to the mean field by

uN,M :=
1
N

N∑
i=1

ui,M .

Combining our assumptions with Cea’s lemma yields

‖ui − ui,M‖V ≤ C1 inf
vM∈VM

‖ui − vM‖V ≤ CaC1M
−s‖ui‖W ≤ CaC1C2M

−s,

for each i = 1, · · · , N , with C1 :=
√

amax
amin

. We therefore have

‖uN − uN,M‖V ≤
1
N

N∑
i=1

‖ui − ui,M‖V ≤ CaC1C2M
−s.

Combining this with (1.7), we obtain

E(‖u− uN,M‖V ) ≤ BN−
1
2 + CaC1C2M

−s. (8.8)

The total number of degrees of freedom appearing in Monte-Carlo Finite Element simulation
with N “samples” is Ndof := NM . To optimize estimate (8.8) with respect to a given total
number of degrees of freedom Ndof := NM , we take N ∼ M2s. Then Ndof ∼ M2s+1 and we
obtain the error estimate

E(‖u− uN,M‖V ) ≤ CN
− s

2s+1

dof , (8.9)

where the constant C depends on B, Ca, C1 and C2.
We next turn to the deterministic method. We incorporate the space discretization as follows:

for any subset Λ ⊂ F of finite cardinality and any vectorM = (Mν)ν∈Λ of positive integers, we
define the approximation space

XΛ,M := {vΛ,M(x, y) =
∑
ν∈Λ

vν(x)Lν(y) ; vν ∈ VMν}.

We define the corresponding Galerkin approximation uΛ,M =
∑

ν∈Λ uν,MLν ∈ XΛ,M to u as the
unique solution to

B(uΛ,M, vΛ,M) = F (vΛ,M), (8.10)

for all vΛ,M ∈ XΛ,M, where B and F are defined by (5.2). The total number of degrees of
freedom is now given by

Ndof =
∑
ν∈Λ

Mν .
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We first mimic the analysis of the Galerkin approximation in §3: from Cea’s lemma, we get

‖u− uΛ,M‖L2(U,V,dρ) ≤ C1‖u−
∑
ν∈Λ

cν,MνLν‖L2(U,V,dρ), (8.11)

for any cν,Mν ∈ VMν . Specifically, we take cν,Mν to be the V -orthogonal projection of the
Legendre coefficient cν onto VMµ . Similar to the discussion in §3, we distinguish two cases:

• Case 1: if dρ = dµ, we obtain by orthogonality

‖u− uΛ,M‖L2(U,V,dρ) ≤ C1

(∑
ν /∈Λ

‖cν‖2V +
∑
ν∈Λ

‖cν − cν,Mν‖2V
) 1

2
. (8.12)

We also reach (8.12) up to a change in the constant C1 if dρ = wdµ with w ∈ L∞(U).

• Case 2: in the case of general ρ, we obtain by the triangle inequality

‖u− uΛ,M‖L2(U,V,dρ) ≤ C1

(∑
ν /∈Λ

‖cν‖V ‖Lν‖L∞(U) +
∑
ν∈Λ

‖cν − cν,Mν‖V ‖Lν‖L∞(U)

)
. (8.13)

The right hand side of the estimates (8.12) and (8.13) are similar to (5.11) and (5.12) up to
an additional term reflecting space discretization. From (8.3), we obtain

‖cν − cν,Mν‖V ≤ CaM−sν ‖cν‖W .

Under the assumptions of Corollary 7.4, we thus obtain from (8.12) in the first case

‖u− uΛ,M‖L2(U,V,dρ) ≤ C
(
N−2r +

∑
ν∈Λ

M−2s
ν ‖cν‖2W

) 1
2
, (8.14)

where N := #(Λ) and from (8.13) in the second case

‖u− uΛ,M‖L2(U,V,dρ) ≤ C
(
N−r +

∑
ν∈Λ

M−sν ‖cν‖W ‖Lν‖L∞(U)

)
. (8.15)

Based on these estimates, we optimize the discretization parameter M = (Mν)ν∈Λ in order to
estimate the best possible convergence rate for the deterministic method in terms of the total
number of degrees of freedom. The optimization problem to be solved consists in minimizing the
number of degrees of freedom under the constraint that the additional term reflecting space dis-
cretization remains of the same order as the first term reflecting discretization in the y variable,
i.e.

Min{
∑
ν∈Λ

Mν :
∑
ν∈Λ

M−2s
ν ‖cν‖2W ≤ N−2r}, (8.16)

in the first case and

Min{
∑
ν∈Λ

Mν :
∑
ν∈Λ

M−sν ‖cν‖W ‖Lν‖L∞(U) ≤ N−r}, (8.17)

in the second case. We solve both problems by treating the Mν as continuous variables, up to
finally taking the integer value of the solution. For (8.16), introducing a Lagrange multiplier,
we obtain

Mν = A
1

1+2s ‖cν‖
2

1+2s

W ∀ν ∈ Λ
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where the value of A is given by

N−2r =
∑
ν∈Λ

M−2s
ν ‖cν‖2W = A−1

∑
ν∈Λ

Mν = A−
2s

1+2s

∑
ν∈Λ

‖cν‖
2

1+2s

W .

Two situations may occur depending on the summability properties of the sequence (‖cν‖W )ν∈F :

• If (‖cν‖W )ν∈F ∈ `p(F) with p = 2
1+2s , we obtain that A−

2s
1+2s ∼ N−2r. It follows that

Ndof =
∑
ν∈Λ

Mν = AN−2r ∼ A
1

1+2s ∼ N
r
s .

We therefore obtain the convergence rate

‖u− uΛ,M‖L2(U,V,dρ) ≤ CN−sdof . (8.18)

• If (‖cν‖W )ν∈F ∈ `p(F) for some p > 2
1+2s , we can estimate A by using Hölder’s inequality

as follows:

A
2s

1+2sN−2r =
∑
ν∈Λ

‖cν‖
2

1+2s

W ≤
(∑
ν∈Λ

‖cν‖pW
) 2
p+2sp

N
1− 2

p+2sp = CN δ,

with δ := 1− 2
p+2sp > 0. This leads to

Ndof =
∑
ν∈Λ

Mν = AN−2r ∼ N
(2r+δ)(1+2s)

2s
−2r = N

2r+δ(1+2s)
2s .

We therefore obtain the convergence rate

‖u− uΛ,M‖L2(U,V,dρ) ≤ CN
− 2sr

2r+δ(1+2s)

dof (8.19)

Remark 8.1 The first estimate (8.18) shows that if the sequence (‖cν‖W )ν∈F is sufficiently
concentrated, the rate of convergence of our method is similar to solving one single deterministic
problem and therefore optimally fast. On the other hand, since we have by Parseval’s equality∑

ν∈F
‖cν‖2W = ‖u‖2L2(U,W,dµ) ≤ ‖u‖

2
L∞(U,W ) ≤ C

2
2

with C2 as in (8.7), we are always ensured that (‖cν‖W )ν∈F ∈ `2(F). In the worst case p = 2,
the rate of convergence is given by the second estimate (8.19) with δ = 2s

1+2s , therefore N−
2sr

2r+2s

which is still faster than the MC rate (8.9) if r > 1
2 , since 2sr

2r+2s −
s

1+2s > 0 then.

By applying a similar analysis to the optimization problem (8.17) we obtain that (8.18) holds
provided that (‖cν‖W ‖Lν‖L∞(U))ν∈F ∈ `p(F) with p = 1

1+s < 1. If this sequence belongs to
`p(F) for some p > 1

1+s , we obtain the final error estimate

‖u− uΛ‖L2(U,V,dρ) ≤ CN
− sr
r+δ(1+s)

dof , (8.20)

with δ := 1− 1
p+sp > 0.

In view of these results, our last task is therefore to analyze the `p-summability properties of
the sequences (‖cν‖W )ν∈F and (‖cν‖W ‖Lν‖L∞(U))ν∈F . We proceed in a similar way as for the
sequences (‖cν‖V )ν∈F and (‖cν‖V ‖Lν‖L∞(U))ν∈F , estimating first the derivatives ‖∂νyu‖L∞(U,W ).
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Theorem 8.2 Let the sequence b(ε) = (bj(ε))j≥1 be defined by

bj(ε) := bj + ε(‖∇ψj‖L∞(D) + Cr‖ψj‖L∞(D)),

where Cr is the constant in Assumption 5, bj := ‖ψj‖L∞(D)

amin
, j = 1, 2, ... and ε > 0 is arbitrary.

We then have
‖∂νyu‖L∞(U,W ) ≤ C3|ν|!b(ε)ν (8.21)

for all ν ∈ F , where C3 := (B + ‖f‖L2(D))
1+CrCP
εamin

.

Proof: for fixed y ∈ U , ν ∈ F we introduce the notation vν(x) := ∇ · (a(x, y)∇∂νyu(x, y)), and
remark that the function ∂νyu(x, y) is the solution to the elliptic problem

−∇ · (a(x, y)∇∂νyu(x, y)) = −vν(x) in D, ∂νyu(x, y)|∂D = 0. (8.22)

Using the regularity estimate (8.7), we obtain that

‖∂νyu(·, y)‖W ≤
1 + CrCP
amin

‖vν‖L2(D). (8.23)

We now estimate ‖vν‖L2(D). To this end, we start from the identity (4.10): for any y ∈ U and
any v ∈ V∫
D

∇·(a(x, y)∇∂νyu(x, y))v(x)dx+
∑

{j: νj 6=0}

νj

∫
D

[∇ψj(x)·∇∂ν−ejy u(x, y)+ψj(x)∆∂ν−ejy u(x, y)]v(x)dx = 0.

Taking here v = vν ∈ V and using the Cauchy-Schwarz inequality we obtain

‖vν‖L2(D) ≤
∑

{j: νj 6=0}

νj

(
‖∇ψj‖L∞(D)‖∂

ν−ej
y u(·, y))‖V + ‖ψj‖L∞(D)‖∆∂

ν−ej
y u(·, y))‖L2(D)

)
.

(8.24)
We next observe that it follows from (8.22) and (8.6) with (8.5) in Assumption 5 that for any
y ∈ U

‖∆(∂ν−ejy u(·, y))‖L2(D) ≤
1

amin
‖vν−ej (·, y)‖L2(D) + Cr‖∂

ν−ej
y u(·, y))‖V .

Inserting this in (8.24) implies

‖vν‖L2(D) ≤
∑

{j: νj 6=0}

νj

(
(‖∇ψj‖L∞(D)+Cr‖ψj‖L∞(D))‖∂

ν−ej
y u(·, y))‖V +bj‖vν−ej‖L2(D)

)
(8.25)

with bj as in (4.8). Multiplying (8.25) by ε > 0 and adding it to the estimate (4.11) established
in the proof of Theorem 4.3, we obtain

‖∂νyu(·, y)‖V + ε‖vν‖L2(D) ≤
∑

{j: νj 6=0}

νjbj(‖∂
ν−ej
y u(·, y)‖V + ε‖vν−ej‖L2(D))

+
∑

{j: νj 6=0}

νjε(‖∇ψj‖L∞(D) + Cr‖ψj‖L∞(D))‖∂
ν−ej
y u(·, y))‖V ,

and therefore

‖∂νyu(·, y)‖V + ε‖vν‖L2(D) ≤
∑

{j: νj 6=0}

νjbj(ε)(‖∂
ν−ej
y u(·, y)‖V + ε‖vν−ej‖L2(D)). (8.26)
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Using the same reasoning by induction as in the proof of Theorem 4.3, we infer from (8.26) that

‖∂νyu(·, y)‖V + ε‖vν‖L2(D) ≤ (‖u(·, y)‖V + ε‖∇ · (a(x, y)∇u(x, y))‖L2(D))|ν|!b(ε)ν

≤ (B + ‖f‖L2(D))|ν|!b(ε)ν

for all ν ∈ F . We thus have

‖vν‖L2(D) ≤
1
ε

(B + ‖f‖L2(D))|ν|!b(ε)ν

which, together with (8.23), concludes the proof. �

We next proceed similar to the study of the summability of (‖cν‖V )ν∈F and (‖cν‖V ‖Lν‖L∞(U))ν∈F .
For this purpose, we introduce the following analog to Assumption 3 for the functions ∇ψj .

Assumption 6. The sequence (‖∇ψj‖L∞(D))j≥1 belongs to `p(N) for some p < 1:∑
j≥1

‖∇ψj‖pL∞(D) <∞

Using the fact that ε can be chosen arbitrarily small in the statement of Theorem 8.2, we reach
the following analog to Corollary 7.3.

Corollary 8.3 Assume that Assumptions 4 and 5 hold, and that Assumptions 3 and 6 hold with
the same p ≤ 1.
(i) If Assumption 2 holds with κ := 1

β , then (‖cν‖W )ν∈F ∈ `p(F) and we obtain the error bound
(8.18) if p = 2

2s+1 and (8.19) if p > 2
2s+1 .

(ii) If Assumption 2 holds with κ := 1, then (‖cν‖W ‖Lν‖L∞(U))ν∈F ∈ `p(F), and we obtain the
error bound (8.20).

9 Conclusion and perspectives

The deterministic approach which is studied in this paper outperforms the Monte-Carlo ap-
proach in terms of convergence rate, provided that the expansion of the random coefficient a
in the basis ψj has some summability properties in the L∞ norm. Our analysis is restricted
to random coefficients which are uniformly elliptic in the sense of Assumption A1. We ex-
pect that similar conclusions hold in different settings, in particular log-normal coefficients, i.e.
a(x, ω) := exp(b(x, ω)) where b is a Gaussian random field. In this setting, the Legendre poly-
nomials need to be replaced by the Hermite polynomials which are orthonormal with respect
to the Gaussian measure. We remark that the analytic regularity results Theorems 4.3 and 8.2
were obtained by real-variable inductive arguments. A different avenue of their proof is through
techniques of several complex variables; this is explored in the forthcoming work [6].

This paper has been concerned with establishing results on the approximation of solutions to
stochastic and parametric problems by finite dimensional adaptively chosen Galerkin subspaces.
Our analysis does not propose a specific algorithm for identifying these subspaces. Our results
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should therefore rather be considered as a benchmark for the convergence analysis of numerical
methods for the approximation of parametric and stochastic PDE’s in the x and y variables.
The two most commonly used numerical methods are Galerkin projections (as described in §5
and §8) and collocation [2, 12, 13]. In order to retrieve the same convergence rates which are
proved in the present paper, such methods need to be developed within an adaptive framework,
with the goal of selecting proper sets ΛN and finite element spaces Vν throughout the numerical
computation. This will be a subject of our future work but we can provide some preliminary
comments on finding good Galerkin subspaces.

In the proofs of our convergence theorems, we establish a-priori estimates for the Legendre
coefficients ‖cν‖V . This suggests a first strategy that consists in choosing Λ by selecting the N
largest ones from the available a-priori estimates. Another approach that might be more effective
is to adaptively build Λ through a-posteriori error estimates. This means that we start from
the coarse set Λ0 = {0} and recursively construct a nested sequence Λn using error indicators.
Such space refinement strategies have been explored in the simpler context of adaptive wavelet
approximation of the solution to a single elliptic PDE’s, see in particular [5, 16]. In these works,
it is shown that a standard bulk chasing strategy based on a-posteriori error indicators leads to
optimal convergence rates. The adaptation of this approach to the parametric and stochastic
PDE’s addressed in this paper is currently under investigation. A critical issue is also the proper
adaptive tuning of the space discretization with respect to the different indices ν as revealed by
our analysis of §8.

Finally, let us reiterate that an intrinsic weakness in the deterministic approach is that it
assumes a complete knowledge on the probability distribution of the coefficients, while Monte-
Carlo is applicable when we only have a sample of independent instances at our disposal. In
such a case, one may still hope to construct a deterministic solution uΛ ∈ VΛ, either by the
collocation method or by a Galerkin system similar to (5.3) in which the integrals over U with
respect to the unkown measure dρ are replaced by computable empirical expectations based on
the available samples.

References

[1] I. Babuska, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42(2004), 800–825.
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